姓 名:李清光 副教授,碩 導 郵箱:leeqg12@163.com;qgli3@gzu.edu.cn |
|
1. 研究領域與方向
穩(wěn)定同位素地球化學;礦山環(huán)境污染過程;煤與煤層氣地質(zhì)學
2. 學習與工作經(jīng)歷
2020.01-至今,貴州大學,資源與環(huán)境工程學院,副教授
2024.9-2025.7,南京大學,教育部中西部青年骨干教師訪問學者
2016.12 -2019.12,貴州大學,資源與環(huán)境工程學院,講師
2012.09-2015.07,中國科學院大學,地球與行星科學學院,博士
2009.09-2012.07,中國科學院地球化學研究所,碩士
3. 學術任職及獎勵
日本地球化學學會會員
中國礦物巖石地球化學學會終身會員
中國地學學會會員
《礦物巖石地球化學通報》青年編委
Journal of Hydrology/Science of The Total Environment/Environmental Pollution/Fuel/Geology/Energy & Fuels/Energy Science & Engineering等期刊審稿人
4. 招生方向:地質(zhì)學(地球化學方向)
資源與環(huán)境(環(huán)境工程方向)
5. 教學課程
講授本科生課程:巖溶地質(zhì)學、環(huán)境地質(zhì)學
講授研究生課程:高等地球化學、同位素地質(zhì)學、環(huán)境同位素
講授博士生課程:同位素地球化學
6. 近年主持承擔的主要科研項目
[1] 國家自然科學基金面上項目,42577281,巖溶區(qū)煤礦地下水甲烷厭氧氧化逆同位素效應對其來源識別的制約,2026/01-2029/12,在研,主持
[2] 貴州省基礎研究計劃重點項目,黔科合基礎-ZK[2024]重點019,基于同位素熱力學平衡分餾與質(zhì)量守恒定量判識不同儲層煤層氣排采貢獻研究,2024/04—2028/03,在研,主持
[3] 國家自然科學基金地區(qū)項目,42267033,喀斯特地區(qū)煤系黃鐵礦氧化過程中硫歧化反應同位素分餾機理,2023/01-2026/12,在研,主持
[4] 國家自然科學基金地區(qū)項目,41867050,喀斯特中高硫煤礦區(qū)礦井水酸化去氣動力學過程及CO2排放規(guī)模研究,2019/01-2022/12,結題,主持
[5] 國家重點研發(fā)計劃專題,2019YFC1805302,有色金屬礦區(qū)地下水重金屬運移模擬及污染通量量化,2020/01-2023/12,結題,子課題負責人
[6] 貴州省基礎研究計劃,黔科合基礎[2019]1096,基于一級反應動力學的礦井水酸化去氣過程及其碳排放效應研究,2019/01-2021/12,結題,主持
[7] 貴州大學實驗室開放項目,SYSKF2018-1-108,地下水DIC溯源的碳同位素地球化學研究,2018/01-2018/08,結題,主持
[8] 國家自然科學基金面上項目,41772122,煤層水與煤層氣主組分δ13C值的分布及δ13CDIC示蹤指標的對比研究,2018/01-2021/12,結題,專題負責人
[9] 貴州大學人才培育項目,黔科合平臺人才[2017]5788,基于瑞利分餾的礦井水酸化去氣DIC碳同位素演化特征研究,2018/03-2020/03,結題,主持
[10] 貴州大學引進人才科研項目,貴大人基合字(2017)73號,礦井水酸化過程機制及DIC碳同位素響應特征-以織金礦區(qū)為例,2018.01-2019.12,結題,主持
7. 學術成果:
[1] Huang, J., Li, Q.*, Wu, P., Wang, S., Lu, W., Fu, Y., Gu, S., Li, X. (2025). Impact of acid mine drainage into a small karst watershed in terms of enhancing erosion of carbonate rocks and significant kinetic carbon isotope fractionation in Southwest China. Journal of Hydrology, 660, 133479.
[2] Du, S., Long, E., Qi, Y., Ju, Y., Wu, P., Fu, Y., Gu, S., Zhang, H., & Li, Q*. (2025). The evolution of sulfur during coalification in marine land interaction environments based on the sequential extraction of different sulfur species. Marine and Petroleum Geology, 173, 107266.
[3] An, L., Li, Q.*, Wu, P., Lu, W., Li, X., Zhang, C., & Zhang, R. (2024). Potential impacts of coal mining activities on nitrate sources and transport in a karst river basin in southwest China. Environmental Science and Pollution Research, 31(10), 15412-15423.
[4] Li, Q., An, L., Wu, P., Wang, S., Gu, S., Yuan, Y., & Fu, Y. (2023). The introduction of nitrogen from coal into the surface watershed nitrogen cycle due to coal mining activity. Science of The Total Environment, 900, 165822.
[5] Li, Q., Wu, P., Wang, S., Huang, J., Lu, W., Tan, D., Gu, S., & Fan, B. (2023). The non-coevolution of DIC and alkalinity and the CO2 degassing in a karst river affected by acid mine drainage in Southwest China. Science of The Total Environment, 900, 165856.
[6] Li, Q., Wu, P. (2022). Research progress on the acidification features of coal mine drainage and its carbon emission effect during coal exploitation. Environ. Eng. Manag. J. 21 (12), 1975–1985.
[7] Li, Q., Wu, P., Li, X., Gu, S., Zhang, R., Zha, X., Qin, S. (2022). The effect of mining development in karst areas on water acidification and fluorine enrichment in surface watersheds. Ecotoxicology and Environmental Safety, 242: 113954
[8] Li, Q., Ju, Y., Gu, S., Wu, P., Wu, L., Xia, P., Chang, X.X. (2022). Coalbed Methane Accumulation Indicated by Geochemical Evidences from Fracture-filling Minerals in Huaibei coalfield, East China. Geochemistry International, 60(1), 52-66.
[9] Lu, Z., Li, Q. *, Ju, Y., Gu, S., Xia, P., Gao, W., & Gong, C. (2022). Biodegradation of coal organic matter associated with the generation of secondary biogenic gas in the Huaibei Coalfield. Fuel, 323, 124281.
[10] Huang, J., Li, Q.*, Wu, P., Wang, S., Guo, M., & Liu, K. (2022). The effects of weathering of coal-bearing stratum on the transport and transformation of DIC in karst watershed. Science of The Total Environment, 156436.
[11] Huang, J., Li, Q.*, Wu, P., Wang, S., Gu, S., Guo, M., & Fu, Y. (2022). The buffering of a riverine carbonate system under the input of acid mine drainage: Example from a small karst watershed, southwest China. Frontiers in Environmental Science, 10, 1020452.
[12] Lu, Z., Tao, M., Li, Q.*, Wu, P., Gu, S., Gao, W., & Yan, Z. (2022). Gas geochemistry and hydrochemical analysis of CBM origin and accumulation in the Tucheng syncline in western Guizhou Province. Geochemical Journal, GJ22005.
[13] Du, S., An, L., Huang, J., Li, Q. *, Wu, P., & Guo, X. (2022). Sources and migration characteristics of fluorine in the river water of a small karst watershed influenced by coal mining. Frontiers in Environmental Science, 1272.
[14] Li, Q., Wu, P., Zha, X., Li, X., Wu, L., & Gu, S. (2018). Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of Midwestern Guizhou, China: evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate. Environmental Science and Pollution Research, 25(18), 18038-18048.
[15] Li, Q., Chen, P., Chen, J., & Hu, Y. (2018). Modes of occurrence of Cr, Co, Ni, Cu, Cd, and Pb in the main coal seams of southwestern China’s Nantong coalfield. Geochemistry International, 56(12), 1220-1232.
[16] Li, Q., Ju, Y., Chen, P., Sun, Y., Wang, M., Li, X., & Chen, J. (2017). Biomarker study of depositional paleoenvironments and organic matter inputs for Permian Coalbearing Strata in the Huaibei Coalfield, East China. Energy & Fuels, 31(4), 3567-3577.
[17] Li, Q., Ju, Y., Lu, W., Wang, G., Neupane, B., & Sun, Y. (2016). Water-rock interaction and methanogenesis in formation water in the southeast Huaibei coalfield, China. Marine and Petroleum Geology, 77, 435-447.
[18] Li, Q., Ju, Y., Bao, Y., Yan, Z., Li, X., & Sun, Y. (2015). Composition, origin, and distribution of coalbed methane in the Huaibei Coalfield, China. Energy & Fuels, 29(2), 546-555.
[19] Li, Q., Ju, Y., Sun, Y., & Bao, Y. (2015). The Population Features of Methanogens and the Biodegradation of Hydrocarbons in Coal Organic Matters. Acta Geologica Sinica (English Edition), 1.
[20] Duan, Y., Wang, Z., Gou, W., Wang, Z., Li, Q., & Li, W. (2025). Stable zinc isotopes as tracers in environmental geochemistry. Earth-Science Reviews, 105185.
[21] Yang, Y., Qin, S., Li, Q., Wu, P., & Li, X. (2025). Study on the effects of Fe/Al on the distribution and fate of rare earth elements during the mixing of acid mine drainage with karst river water. Journal of Geochemical Exploration, 107813.
[22] Qin, S., Li, X., Huang, J., Li, W., Wu, P., Li, Q., & Li, L. (2024). Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environmental Pollution, 343, 123243.
[23] You, G., Gu, S., Li, Q., Guo, Z., Zhao, F. & Zhang, X. (2024). Heavy metals mobilization and attenuation in Cd-rich Niujiaotang legacy Pb-Zn tailings of southwestern China. Geochemical Journal, 58(2), 80-93.
[24] Chen, S., Zhang, C., Qiu, L., Li, Q., Zhang, K., & Luo, H. (2022). Biogeochemical transformation of sulfur and its effects on arsenic mobility in paddy fields polluted by acid mine drainage. Chemosphere, 293, 133605.
[25] Zhao, F., Gu, S., Li, Q., Guo, Z., Zhang, X., You, G., & Zhang, T. (2023). Persistent thallium enrichment and its high ecological risks developed from historical carbonaceous Hg-Tl mining waste. Science of The Total Environment, 902, 166068.
[26] Qin, S., Li, X., Wu, P., & Li, Q. (2022). Spatial–temporal variations and multi-statistical analysis of contaminants in the waters affected by acid-mining drainage in Karst area: a case of coal-mining area in Zhijin County. Environmental Earth Sciences, 81(10), 1-17.
[27] Wu, J., Yang, H., Yu, W., Yin, C., He, Y., Zhang, Z., Li, Q., & Chen, J. (2022). Effect of Ecosystem Degradation on the Source of Particulate Organic Matter in a Karst Lake: A Case Study of the Caohai Lake, China. Water, 14(12), 1867.
[28] Guo, Z., Gu, S., Li, Q., Zhang, T., Xie, X., & Zhao, F. (2022). Carbonate mineral controls the transport of Cd from tailings to surrounding soils: An example from Cd-rich niujiaotang Zn mine in Guizhou Province, southwest China. Frontiers in Environmental Science, 10, 1045093.
[29] Li, X., Ju, Y., Song, Y., Yan, Z., & Li, Q. (2022). Particle Size and Internal Structure of Deformed Coal: Microstructure and Adsorption/Desorption Characteristics of CO2 and CH4. Front. Unconventional Natural Gas Geoscience, 10, 876196.
[30] Tan, D., Li, Q., Wang, S., Yeager, K. M., Guo, M., Liu, K., & Wang, Y. (2021). Diel variation of CH4 emission fluxes in a small artificial lake: Toward more accurate methods of observation. Science of The Total Environment, 784, 147146.
[31] Zhong, Y., Xia, P., Ning, S., Fu, Y., Li, Q., & Yu, Y. (2021). Geochemical characteristics and its geological application of over-mature Longmaxi shale gas in the northern Guizhou area, China. Arabian Journal of Geosciences, 14(18), 1-9.
[32] Li, X., Zhang, R., Li, Q., Wu, P., & Ye, H. (2021). Rare earth elements and yttrium (REY) in coal mine drainage from Southwest China: Geochemical distribution and resource evaluation. Science of The Total Environment, 782, 146904.
[33] Jiang, W., Xia, P., Li, Q., Fu, Y., & Mou, Y. (2020). Compositional and Isotopic Characteristics for The Longmaxi Shale Gas in The Northern Guizhou Area, South China.
[34] Chen, J., Chen, P., Yao, D., Huang, W., Tang, S., Wang, K., Li, Q., & Wang, R. (2018). Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China. International Geology Review, 60(5-6), 621-637.
[35] Ju, Y., Sun, Y., Sa, Z., Pan, J., Wang, J., Hou, Q., Li, Q., & Liu, J. (2016). A new approach to estimate fugitive methane emissions from coal mining in China. Science of the Total Environment, 543, 514-523.
[36] Wang, G., Ju, Y., Yan, Z., & Li, Q. (2015). Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan–Huaibei Coalfield in China. Marine and Petroleum Geology, 62, 1-13.
[37] Bao, Y., Ju, Y., & Li, Q. (2015). Accumulation dynamics mechanism and gas origin of coalbed methane in Huainan and Huaibei coalfields, Eastern China. Acta Geologica Sinica (English Edition), 1.
[38] Ju, Y. W., Li, Q. G., Yan, Z. F., Sun, Y., & Bao, Y. (2014). Origin types of CBM and their geochemical research progress. Journal of China Coal Society, 39(5), 806-815.
[39] Ju, Y., Wang, G., Bu, H., Li, Q., & Yan, Z. (2014). China organic-rich shale geologic features and special shale gas production issues. Journal of Rock Mechanics and Geotechnical Engineering, 6(3), 196-207.
[40] Wang, G., Ju, Y., Bao, Y., Yan, Z., Li, X., Bu, H., & Li, Q. (2014). Coal-bearing organic shale geological evaluation of Huainan–Huaibei Coalfield, China. Energy & Fuels, 28(8), 5031-5042.
[41] Bao, Y., Wei, C., Wang, C., Wang, G., & Li, Q. (2014). Geochemical characteristics and generation process of mixed biogenic and thermogenic coalbed methane in Luling coalfield, China. Energy & Fuels, 28(7), 4392-4401.
[42] 黃江潯,李清光*,安麗,等.喀斯特小流域地表水碳酸鹽系統(tǒng)化學平衡對酸性礦山廢水的緩沖作用[J].中國巖溶,2023,42(01):19-28.
[43] 王晤巖,李清光*.淡水碳酸鹽湖泊中CaCO3-—CO32—HCO3-—CO2化學平衡對CO2的緩沖作用——以貴州百花湖為例[J].中國巖溶,2021,40(04):572-579.
[44] 李清光,吳攀,顧尚義,劉沛,胡海洋,高為,龔朝兵,常溪溪.黔西某煤層氣開發(fā)區(qū)塊產(chǎn)出水有毒有害元素污染特征及其環(huán)境效應[J].地球科學,2019,44(09): 2862-2873.
[45] 路照,李清光*.淮北煤田煤系有機質(zhì)中多環(huán)芳烴(PAHs)來源與組成分析[J].煤炭與化工,2022,45(08):128-134.DOI:10.19286/ j.cnki.cci.2022.08.036.
[46] 李清光,王仕祿*.滇池流域硝酸鹽污染的氮氧同位素示蹤[J].地球與環(huán)境,2012,40(03): 321-327. DOI:10.14050/j.cnki.1672-9250. 2012.03.002.
[47] 查學芳,吳攀,李學先,陳世萬,黃家琰,李清光,陳思睿.基于水化學與硫同位素的卡林型金礦區(qū)巖溶水文地球化學特征及控制因素[J/OL].環(huán)境科學:1-15[2022-11-04].DOI:10.13227/j.hjkx.202112141.
[48] 陳健,陳萍,姚多喜,郭江峰,劉震,陸佳佳,李清光,劉文中,胡友彪.云南省臨滄市勐托新近系褐煤的微量元素地球化學特征[J].地學前緣,2016,23(03):83-89.DOI:10.13745/j.esf.2016.03.011.
[49] 卜紅玲,琚宜文,王國昌,房立志,顏志豐,李清光.淮南煤田煤系泥頁巖組成特征及吸附性能[J].中國科學院大學學報,2015,32(01):82-90.
[50] 黃強盛,李清光,盧瑋琦,楊偉紅,王仕祿.滇池流域地下水、河水硝酸鹽污染及來源[J].地球與環(huán)境,2014,42(05):589-596.
[51] 琚宜文,王桂粱,衛(wèi)明明,譚鋒奇,鮑園,王國昌,李清光, NeupaneBhupati.中新生代以來華北能源盆地與造山帶耦合演化過程及其特征[J].中國煤炭地質(zhì),2014,26(08):15-19+38.
[52] 琚宜文,李清光,譚鋒奇.煤礦瓦斯防治與利用及碳排放關鍵問題研究[J].煤炭科學技術,2014,42(06):8-14.DOI:10.13199/j.cnki. cst.2014.06.002.
[53] 琚宜文,李清光,顏志豐,孫盈,鮑園.煤層氣成因類型及其地球化學研究進展[J].煤炭學報,2014,39(05):806-815.DOI:10.13225 /j.cnki.jccs.2014.0086.


